点拨 数学有数

- (1)求 $a_n=g(n)$ 的导函数 g'(n);
- (2)判断数列 {a_n} 的单调性.

[解析] (1) 由已知,有 $a_n - \frac{1}{a_n} = -2n$,即 $a_n^2 + 2na_n - 1 = 0$,解得 $a_n = -n \pm \sqrt{n^2 + 1}$.而 $a_n > 0$,所以 $a_n = \sqrt{n^2 + 1}$ -n. 于是 $g'(n) = \frac{n}{\sqrt{n^2 + 1}} - 1$.

(2) 因为
$$\frac{n}{\sqrt{n^2+1}} = \frac{1}{\sqrt{1+\frac{1}{n^2}}} < 1 \ (n \in \mathbb{N}^+)$$
,所以 $g'(n) =$

$$\frac{n}{\sqrt{n^2+1}}$$
 -1<0 ($n \in \mathbb{N}^*$),

故数列 { a_n} 是单减数列.

[点评] 本题考查了复合函数、数列以及函数单调的导数式条件.数列是特殊的函数,将 $a_n=g(n)$ 视为 n 的函数,利用函数导数的符号判断数列 $\{a_n\}$ 的单调性.

考点 4. 函数图像的公切线问题

例 4. 设函数 $f(x)=e^x$ 的反函数为 g(x),点 $P(x_1,y_1)$, $Q(x_2,y_2)$ 分别为函数 f(x)的图像 C_1 和 g(x)的图像 C_2 上的两个动点,过 P、Q 的直线为 l,当 l 为曲线 C_1 、 C_2 的公切线时,求 x_1 , x_2 满足的关系以及 x_1 的取值范围.

[解析]
$$f(x)=e^x$$
, $f'(x)=e^x$; $g(x)=\ln x$, $g'(x)=\frac{1}{x}$.

过 $P(x_1,e^{x_1})$, $Q(x_2,\ln x_2)$ 的公切线 l 的方程有两种表达式: $y-e^{x_1}=e^{x_1}(x-x_1)$ 和 $y-\ln x_2=\frac{1}{x_2}(x-x_2)$,即 $y=e^{x_1}x+e^{x_1}(1-x_1)$ 和 $y=\frac{1}{x_2}x+e^{x_1}(1-x_2)$

$$\ln x_2-1$$
,因此 $\begin{cases} e^{x_1}=\frac{1}{x_2}\\ e^{x_1}=(1-x_1) = \ln x_2-1 \end{cases}$,解得 $x_2=e^{-x_1}$, $e^{x_1}=\frac{x_1+1}{x_1-1}$.由

$$e^{x_1} = \frac{x_1 + 1}{x_1 - 1} > 0 \Rightarrow x_1 < -1 \ \ \vec{\boxtimes} \ x_1 > 1 \ \ \vec{\boxminus} \ \ x_1 > 1 \ \ \vec{\boxminus} \ \ e^{x_1} > e \Rightarrow 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 < e > 1 <$$

$$x_1 < \frac{e+1}{e-1}; \stackrel{\text{def}}{=} x_1 < -1 \text{ ft}, e^{x_1} < e^{-1} \Rightarrow \frac{x_1+1}{x_1-1} < e^{-1} \Rightarrow \frac{1+e}{1-e} < x_1 < -1.$$

故 x_1 , x_2 满足的关系是的取值范围是 $x_2=e^{-x_1}$; x_1 的取值范围是 $(\frac{1+e}{1-e}$, -1) \cup $(1,\frac{e+1}{e-1})$.

[点评] 本题是超越型函数图像的公切线问题,用传统方法难以求解. 这里根据导数的几何意义得到公切线 l 的两种表达式,从而构建方程,获得 x_1 , x_2 的关系,进一步求出 x_1 的取值范围.一般地,如果直线 l 切曲线 y=f(x) 和 y=g(x) 分别于点 $P(x_1, y_1)$, $Q(x_2, y_2)$,则 l 有两种表示方法: $y-f(x_1)=f'(x_1)(x-x_1)$ 和 $y-g(x_2)=g'(x_2)(x-x_2)$,即它们表示同一条直线,我们常常以此构建方程组 $\begin{cases} f'(x_1)=g'(x_2), \\ f(x_1)-x_1f'(x_1)=g(x_2)-x_2g'(x_2) \end{cases}$ 解决公切线问题.

考点 5. 超越型不等式的证明问题

例 5. 设 $f(x)=x-\sin x$,若 $x \in [0,\pi]$, $\theta \in (0,\pi)$,试证明 $\frac{2f(\theta)+f(x)}{3} \ge f(\frac{2\theta+x}{3}).$

[解析]
$$\frac{2f(\theta)+f(x)}{3} - f(\frac{2\theta+x}{3}) = \frac{2(\theta-\sin\theta)+x-\sin x}{3} - \frac{2\theta+x}{3} + \sin\frac{2\theta+x}{3} = -\frac{2}{3}\sin\theta - \frac{1}{3}\sin x + \sin\frac{2\theta+x}{3}$$
. $\Leftrightarrow g(x) = -\frac{2}{3}\sin\theta - \frac{1}{3}\sin x + \sin\frac{2\theta+x}{3}$, 则 $g'(x) = -\frac{1}{3}\cos x + \frac{1}{3}\cos\frac{2\theta+x}{3} = \frac{1}{3}$ (cos $\frac{2\theta+x}{3} - \cos x$).

 $\therefore x \in [0,\pi], \ \theta \in (0,\pi), \ \therefore \frac{2\theta+x}{3} \in (0,\pi), \ \text{而 cosx }$ 在 $[0,\pi]$ 内单调递减, 所以由 $g'(x)=\frac{1}{3} \ (\cos\frac{2\theta+x}{3}-\cos x)=0$,得 $x=\theta$. 当 $\theta < x \le \pi$ 时, g'(x) > 0, g(x) 单调递增;当 $0 \le x < \theta$ 时, g'(x) < 0, g(x) 单调递减。因此 $g(\theta)$ 是 g(x)在 $[0,\pi]$ 上的最小值.

于是
$$g(x) \geqslant g(\theta) = 0$$
, $\frac{2f(\theta) + f(x)}{3} - f(\frac{2\theta + x}{3}) \geqslant 0$,

即当 $x \in [0,\pi]$, $\theta \in (0,\pi)$ 时, $\frac{2f(\theta)+f(x)}{3} \geqslant f(\frac{2\theta+x}{3})$ 成立.

[点评] 本题中的超越型不等式用传统方法难以证明,导数为这类问题的研究和解决提供了新思路. 由于导数在这类问题中的应用往往是隐性的,需要我们去创造条件、去构造模式 (主要是构造新函数,此题中就是函数 g(x)),这就常常导致我们只重视用传统方法思考,而忽视导数的应用. 不等式的证明除常见的比较法、分析法、综合法、反证法外,构造函数、利用导数知识处理是一种非常重要的方法. 在涉及指数、对数、分式、三角等复杂的不等式证明问题中,有着其他方法不可比拟的优越性,因此要重点关注.

类型 6. 含参数的恒成立不等式问题

例 6. 已知函数 $f(x) = \frac{a}{3}x_3 - \frac{3}{2}x^2 + (a+1)x + 1$, 其中 a 为实数. 若不等式 $f'(x) > x^2 - x - a + 1$ 对任意 $a \in (0, +\infty)$ 都恒成立,求实数 x 的取值范围.

[解析] 因为 $f'(x)=ax^2-3x+(a+1)$,所以 $f'(x)>x^2-x-a+1$ 就是 $ax^2-3x+(a+1)>x^2-x-a+1$,即 $(x^2+2)a-2x-x^2>0$.

令 $g(a)=(x^2+2)a-2x-x^2$, 则 $g'(a)=x^2+2>0$, g(a)在 $a \in (0,+\infty)$ 上单增, $(x^2+2)a-2x-x^2>0$ 在 $a \in (0,+\infty)$ 恒成立⇔ $g(0) \ge 0$. 所以 $-2x-x^2 \ge 0$,解得 $-2x \le x \le 0$,即为实数 x 的取值范围.

[点评] 本题涉及整式函数型恒成立不等式, 主要考查多项式函数的求导法则、导数与函数单调性的关系. 一要注意三次函数的导函数则是二次函数, 二次函数是我们熟悉的模型, 这是导数的降次功能. 二要注意构造新函数 g(a), 活用导数知识求出 g(a)的值域, 顺利实现解题目标. 一般地, 不等式 f(x) < k(k) 为实数) 在 $x \in I$ 上恒成立 $\Leftrightarrow f_{max} < k(x \in I)$; 不等式 f(x) > k(k) 时恒成立) 在 $x \in I$ 时恒成立 $\Leftrightarrow f_{max} < k(x \in I)$. 求解此类问题最常见的方法是函数最值法,即构造出相应的辅助函 f(x), 利用上述结论处理. 本题不等式 $(x^2+2)a-2x-x^2 > 0$ 在 $a \in (0,+\infty)$ 恒成立 $\Leftrightarrow g(a) \ge 0$.