点拨 数学有数

必备的基本技能入手,考查通项公式、求和及不等式的证明

例 6. 设 $\alpha>2$, 给定数列 $\{a_n\}$, 其中 $x_1=\alpha$, $x_{n+1}=\frac{x_n^2}{2(x_n-1)}$, 求证:

- (1)若 $y_n = \lg \frac{x_n 2}{x_n}$,则数列 $\{y_n\}$ 是等比数列;
- (2)若 $\alpha>3$,则当 $n\geq \lg\frac{\alpha}{3}/\lg\frac{4}{3}$ 时, $x_n<3$;
- (3)若 $\alpha < 3$,那么 $x_n \leq 2 + \frac{1}{2^{n-1}}$.

解析 (1) 由
$$x_{n+1} = \frac{x_n^2}{2(x_n - 1)}$$
 \Rightarrow $\begin{cases} x_{n+1} - 2 = \frac{(x_n - 2)^2}{2(x_n - 1)} \\ x_{n+1} = \frac{x_n^2}{2(x_n - 1)} \end{cases}$ $\Rightarrow \frac{x_{n+1} - 2}{x_{n+1}} = \frac{x_n^2}{x_{n+1}}$

 $(\frac{x_n-2}{x_n})^2$,由于 $\alpha>2$,易得 $\frac{x_n-2}{x_n}>0$,于是 $\lg \frac{x_{n+1}-2}{x_{n+1}}=2\lg \frac{x_n-2}{x_n}$ $\Rightarrow y_{n+1}=2y_n$.

故数列{\gamma_n}是等比数列。

(2)由
$$\frac{x_{n+1}}{x_n} = \frac{x_n}{2(x_n-1)} = \frac{1}{2}(1+\frac{1}{x_n-1})$$
,得 $x_k > 3$ 时, $\frac{x_{k+1}}{x_k} < \frac{3}{4} < 1$ 即 $x_{k+1} < x_k$.

假设
$$\alpha > 3$$
, 当 $n \ge \lg \frac{\alpha}{3} / \lg \frac{4}{3}$ 时, 有 $x_{n+1} \ge 3$.

由
$$x_1>x_2>\cdots>x_n>x_{n+1}\geq 3$$
 及 $x_1=\alpha$,得 $3\leq x_{n+1}=x_1\cdot (\frac{x_2}{x_1})\cdot \cdots$

$$(\frac{x_{n+1}}{x_n})$$
< $\alpha(\frac{3}{4})^n$ $\Rightarrow n < \lg \frac{\alpha}{3} / \lg \frac{4}{3}$ 与假设矛盾.

故当
$$n \ge \lg \frac{\alpha}{3} / \lg \frac{4}{3}$$
 时, $x_n < 3$.

(3)
$$\boxplus$$
 (1) $\notin \frac{x_{n+1}-2}{x_{n+1}} = (\frac{x_n-2}{x_n})^2 \Rightarrow \frac{x_n-2}{x_n} = (\frac{\alpha-2}{\alpha})^{2^{-1}} \Rightarrow x_n=2+$

$$\frac{2}{\left(\frac{\alpha}{\alpha-2}\right)^{2^{n-1}}-1}.$$

 $\geq 1+nx$,

$$\frac{1}{\sqrt[4]{\pi}} \left(\frac{\alpha}{\alpha - 2}\right)^{2^{-1}} = \left(1 + \frac{\alpha}{\alpha - 2}\right)^{2^{-1}} \geqslant 1 + \left(\frac{\alpha}{\alpha - 2}\right) \cdot 2^{n-1} \geqslant 1 + 2^{n} \Rightarrow x_{n} = 2 + \frac{2}{\left(\frac{\alpha}{\alpha - 2}\right)^{2^{n-1}} - 1} \leqslant 2 + \frac{1}{2^{n-1}}.$$

点评 本题的第一问考查递推公式的变形技巧及等比数列的判定,显然,有难度.第二问考查反证法与放缩法的综合应用,其间用恒等式的构造,有难度也有灵活性.第三问在第一问的基础上,再多次使用放缩法,最终产生结论,寥寥几笔,数学味极浓.

热点六:解答题建立在分析、探索、发现的基础上考查 考生分析问题与解决问题的能力

例 7. 已知数列 $\{a_n\}$ 满足 : a_1 =1 , a_2 =2 , 且 a_{n+2} =(2+cos $n\pi$)(a_n -1)+3 , $n \in \mathbb{N}^*$.

- (1)求通项公式 a_n ;
- (2)设 $\{a_n\}$ 的前 n 项和为 S_n ,问:是否存在正整数 m,n 使得

 $S_{2n}=mS_{2n-1}$? 若存在,请求出所有的符合条件的正整数对 (m,n), 若不存在,请说明理由.

解析 (1)当 n 是奇数时, $\cos n\pi = -1$; 当 n 是偶数时, $\cos n\pi = 1$. 所以, 当 n是奇数时, $a_{n\omega} = a_{n+2}$: 当 n 是偶数时, $a_{n\omega} = 3a_{n}$.

又 a_1 =1, a_2 =2,所以 a_1 , a_3 , a_5 ,…, a_{2n-1} ,…是首项为 1,公差为 2 的等差数列; a_2 , a_4 , a_6 ,…, a_{2n} ,…是首项为 2,公比为 3 的等比数列.

所以,
$$a_n$$
 $\begin{cases} n, n \text{ 为奇数} \\ 2 \times 3^{\frac{n}{2} - 1} \\ n, n \text{ 为偶数} \end{cases}$

(2)由(1),得 S_{2n} =($a_1+a_3+\cdots+a_{2n-1}$)+($a_2+a_4+\cdots+a_{2n}$)=[1+3+····+(2n-1)]+(2+6+····+2×3 $^{n-1}$)=3 n + n^2 -1, S_{2n-1} = S_{2n} - a_{2n} =3 n + n^2 -1-2×3 $^{n-1}$ =3 $^{n-1}$ + n^2 -1.

所以, 若存在正整数 m、n, 使得 $S_{2n}=mS_{2n-1}$

$$\text{III} \ m = \frac{S_{2n}}{S_{2n-1}} = \frac{3^n + n^2 - 1}{3^{n-1} + n^2 - 1} = 1 + \frac{2 \times 3^{n-1}}{3^{n-1} + n^2 - 1} \le 1 + \frac{2 \times 3^{n-1}}{3^{n-1}} = 3.$$

显然、当 m=1 时、 $S_{2n}=3^{n}+n^{2}-1\neq 1\times(3^{n-1}+n^{2}-1)=S_{2n-1}$:

当 m=2 时,由 $S_{2n}=2S_{2n-1}$,整理得 $3^{n-1}=n^2-1$.

显然,当 n=1 时, $3^{1-1}=1 \neq 0=1^2-1$;当 n=2 时, $3^{2-1}=3=2^2-1$,所以(2,2)是符合条件的一个解.

当 m=3 时,由 $S_{2n}=3S_{2n-1}$,整理得 n=1,

所以(3,1)是符合条件的另一个解.

综上所述,所有的符合条件的正整数对(m,n),有且仅有(3,1)和(2,2)两对.

点评 本题建立在分析、探索、发现的基础上,考查考生分析问题与解决问题的能力很到位.首先通项公式,要借助分类思想来完成.其次,要"锁定" m 的范围,这个看似简单的步骤,其实愠含多种基本方法(合理处理分式、放缩等),这些方法有一种不过关就很难产生结论.

热点七:解答题建立在交汇考查的基础上,设计与其它 知识结合的"多功能"试题

例 8. 在直角坐标平面上有一点列 $P_1(x_1,y_1)$, $P_2(x_2,y_2)$, … , $P_n(x_n,y_n)$ … , 对一切正整数 n , 点 P_n 位于函数 $y=3x+\frac{13}{4}$ 的图像上 ,

且 P_n 的横坐标构成以 $-\frac{5}{2}$ 为首项, -1 为公差的等差数列 $\{x_n\}$.

- (1)求点 P_n 的坐标;
- (2)设抛物线列 $c_1, c_2, c_3, \cdots, c_n, \cdots$ 中的每一条的对称轴都垂直于 x 轴,第 n 条抛物线 c_n 的顶点为 P_n ,且过点 $D_n(0, n^2+1)$,记与抛物线 c_n 相切于 D_n 的直线的斜率为 k_n ,求 $\frac{1}{k_n k_n} + \frac{1}{k_n k_n} + \cdots$

$$+\frac{1}{k \cdot k}$$
;

(3) 设 $S=\{x|x=2x_n, n\in \mathbb{N}^*\}$, $T=\{y|y=4y_n, n\in \mathbb{N}^*\}$, 等差数列 $\{a_n\}$ 的任一项 $a_n\in S\cap T$, 其中 a_1 是 $S\cap T$ 中的最大数, -265< a_{10} <-125,求 $\{a_n\}$ 的通项公式.