点拨 数学有数

 $\frac{5k^2+2k+3}{6k^2+4}$ 的值域.

化简整理得(6y-5)k2-2k+4y-3=0(*)

①6y-5=0 即
$$y=\frac{5}{6}$$
时, $k=\frac{1}{6}$,符合;

② $6y-5\neq0$ 时,方程(*)有解,所以判别式 $\triangle=4-4(6y-5)(4y-3)\geq0$,

解得
$$\frac{7}{12} \le y \le 1$$
,故 $\frac{7}{12} \le y \le 1$ 且 $y \ne \frac{5}{6}$.所以 $\frac{7}{12} \le y \le 1$,

因此最大值为 y=1,由 $1=\frac{5k^2+2k+3}{6k^2+4}$ 解得 k=1.

解法 4: (特殊法) $y = \frac{5k^2 + 2k + 3}{6k^2 + 4} = 1 - \frac{k^2 - 2k + 1}{6k^2 + 4} \le 1$, 当 k = 1 时取等号.

对于上述四种解法,建议同学们着重掌握解法 2、解法 3,尤其是解法 2,具有可操作性,易理解,而解法 1 技巧性比较强,属于"听得懂,难操作",解法 4"凑巧"成份大.

例 3. 已知中心在原 2 点 O,焦点在 x 轴上,离心率为 $\frac{\sqrt{3}}{2}$ 的椭圆过点($\sqrt{2}$, $\frac{\sqrt{2}}{2}$).

- (1)求椭圆的方程;
- (2) 设不过原点 O 的直线 l 与该椭圆交于 P、Q 两点,满足直线 OP, PQ, OQ, 的斜率依次成等比数列,求 $\triangle OPQ$ 面积的取值范围.

解析:
$$(1)\frac{x^2}{4}+y^2=1$$
.

(2)在老师苦口婆心的多次讲解下,同学们应该都会这样做:

设直线 l 方程 $y=kx+m \ (m\neq 0)$,通过联立椭圆方程消去 y 得 $(1+4k^2)x^2+8kmx+4m^2-4=0$,

判别式 $\triangle = 64k^2m^2 - 4(1+4k^2)(4m^2-4) > 0$,得 $1+4k^2 > m^2$,

设
$$P(x_1,y_1),Q(x_2,y_2),$$
则 $x_1+x_2=\frac{-8km}{1+4k^2},x_1x_2=\frac{4km-4}{1+4k^2},$ | PQ | =

$$\sqrt{1+k^2} \mid x_1-x_2 \mid = \sqrt{1+k^2} \frac{4\sqrt{1+4k^2-m^2}}{1+4k^2}$$

至此后,后面可能就会觉得无从下手,其实,我们只要根据斜率关系建立等式就能看到"曙光".

因为 $k^2 = \frac{y_1}{x_1} \cdot \frac{y_2}{x_2}$,而 $y_1y_2 = (kx_1+m)(kx_2+m) = k^2x_1x_2 + km(x_1+x_2)$ $+m^2 = \frac{m^2 - 4k^2}{1 + 4k^2}$,

$$+m^2 = \frac{1}{1+4k^2}$$
,

所以
$$k^2 = \frac{m^2 - 4k^2}{4m^2 - 4}$$
,解得 $k^2 = \frac{1}{4}$,

故 | PQ | = $\sqrt{10-5m^2}$, 且原点 O 到直 l 线的距离 $d = \frac{|m|}{\sqrt{1+k^2}} = \frac{2|m|}{\sqrt{5}}$, 所以 $S_{\Delta OPQ} = \frac{1}{2} \cdot \sqrt{10-5m^2} \cdot \frac{2|m|}{\sqrt{5}} = |m|$

到此,如何求 $S_{\triangle OPQ}$ 面积的取值范围呢?可以看成是关于 m^2 的一元二次问题: $S_{\triangle OPQ} = \sqrt{2m^2 - m^4}$,所以 $0 < S_{\triangle OPQ} \le 1$.

这个答案还是有问题的! 因为前面在得到 $1+4k^2>m^2$ 、 $k^2=\frac{1}{4}$ 、 $k^2=\frac{m^2-4k^2}{4m^2-4}$ 后,我们可以得到 $0< m^2< 2$ 且 $m^2\ne 1$,所以 $0< S_{\triangle OFQ} \le 1$.

例 4. 椭圆 T 的中心为坐标原点 O,右焦点为 F(2,0),且 椭圆 T 过点 $E(2,\sqrt{2})$. $\triangle ABC$ 的三个顶点都在椭圆 T 上,设三条边的中点分别为 M,N,P.

- (1)求椭圆T的方程;
- (2)设 $\triangle ABC$ 的三条边所在直线的斜率分别为 k_1,k_2,k_3 ,且 $k_1 \neq 0, i=1,2,3$. 若直线 OM,ON,OP 的斜率之和为 0,求证: $\frac{1}{k_1} + \frac{1}{k_2} + \frac{1}{k_3}$ 为定值.

解析:
$$(1)\frac{x^2}{8} + \frac{y^2}{4} = 1$$
.

(2)阅读完该问时,同学们可能会觉得无从下手,但若我们能想起本题的命题背景:直线与椭圆相交,则该直线斜率与相交线段中点与原点的连线斜率之积为常数,则该题的解决就容易了.

设斜率为 k 的直线 l 与椭圆 $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$ 相交于 A 、B 两点,线段 AB 中点 M 与原点 O 的连线斜率为 k_1 ,则 $k\cdot k_1=-\frac{b^2}{c^2}$.

得 $\frac{x_2^2 - x_1^2}{a^2} + \frac{y_2^2 - y_1^2}{b^2} = 0$,则 $\frac{y_2 - y_1}{x_2 - x_1} \cdot \frac{y_2 + y_1}{x_2 + x_1} = -\frac{b^2}{a^2}$,即 $k \cdot k_1 = -\frac{b^2}{a^2}$.

因此,对于本题 $k_{OM} \cdot k_1 = -\frac{1}{2}, \frac{1}{k_1} = -2k_{OM},$

同理可得 $\frac{1}{k_2}$ =-2 k_{ON} , $\frac{1}{k_3}$ =-2 k_{OP} , 所以 $\frac{1}{k_1}$ + $\frac{1}{k_2}$ + $\frac{1}{k_3}$ =-2(k_{ON} + k_{OM} + k_{OP})=0 为常数.

实际上, $\frac{1}{k_1}$ + $\frac{1}{k_2}$ + $\frac{1}{k_3}$ =- $\frac{b^2}{a^2}$ (k_1' + k_2' + k_3'), $\frac{1}{k_1'}$ + $\frac{1}{k_2'}$ + $\frac{1}{k_3'}$ =- $\frac{b^2}{a^2}$ (k_1 + k_2 + k_3),即只要其中某一类的斜率之和为常数,则另一类的斜率倒数之和必也为常数,并且不难发现还可以推广到有限情况和双曲线中.

综上所述,希望通过本文四道圆锥曲线中斜率关系题的 分析,对同学们突破该类题型有所帮助.

> (作者单位:浙江绍兴县越崎中学) 责任编校 **徐国坚**