点拨 理综高考

③) 酸性溶液 (含大量 H^+) 中,不能存在弱酸根离子 (如 CO_3^{2-} 、 SO_3^{2-} 、 CIO^- 、 AIO_2^+);碱性溶液 (含大量 OH^-) 中,不能存在弱碱的阳离子 (如 NH_4^+ 、 AI^{3+}); HCO_3^- 在酸性和强碱性中均不能存在。

④水解显酸性的阳离子 (Al^{3+}, Fe^{3+}) 与水解显碱性的阴离子 (CO_3^{2-}, AlO_2^{-}) 不能共存。但 NH_4^{+} 与 HCO_3^{-} 在水溶液中可以共存。

⑤特别要注意氧化还原的问题,如:当有 H^+ 大量存在时, NO_3^- 、 MnO_4^- 、 $Cr_2O_7^2$ -不能与 Fe^{2+} 、 I^- 、 S^{2-} 、 Br^- 等大量共存, Fe^{3+} 与 I^- 不能共存, CIO^- 在碱性条件下也有强氧化性。

⑥水电离的 c (H^+) 或 c (OH^-) 为 1×10^{-12} $mol\cdot L^{-1}$ 时,溶液可能为酸性也可能为碱性,一定不存在 HCO_3^- 。

【典例 2】 (2013 年广东理综) 水溶液中能大量共存的一组离子是

A. Na⁺, Al³⁺, Cl⁻, CO₃²⁻

B. H⁺, Na⁺, Fe²⁺, MnO₄⁻

C. K+, Ca²⁺, Cl-, NO₃-

D. K⁺, NH₄⁺, OH⁻, SO₄²⁻

解析: A 选项中 Al³+与 CO_3^2 -能发生双水解反应生成氢氧化铝沉淀和二氧化碳气体,不能共存; B 选项中的 Fe^2 +与 MnO_4 -发生氧化还原反应不能共存; D 选项中的 NH_4 +与 OH-能反应生成氨水不能共存。

答案: C

考点三 阿伏加德罗常数的正误判断

复习策略:有关阿伏加德罗常数的正误判断问题,实质上是以物质的量为中心的各种物理量之间的换算问题。在复习时一定要弄清以物质的量为中心的计算关系网络,利用 n=m/M、 $n=V/V_m$ 、 $n=c\cdot V$ 等关系,依次将题目中已知的质量、气体体积、溶液浓度等向物质的量转化,再利用 $N=n\cdot N_A$ 的关系转化为粒子的个数,从而逐一判断选项的正确与错误。另外,要熟悉一些常见元素及化合物的化学性质和强、弱电解质的知识,学会利用相关概念去分析问题。

重点知识与注意问题

①对于涉及气体体积的选项,一定要注意是否是标准状态、物质是否是气体。

②对于溶液中离子个数的问题,一要注意看是否有体积,物质的量必须通过浓度与体积之积才能求出;二要注意物质或离子是否电离或水解,如弱酸部分电离,弱酸根离子、弱碱的阳离子均能水解,离子的浓度会发生一些变化。

③常见物质的结构:过氧化钠中存在过氧根离子(既阴、阳离子之比为1:2),氯化钠等离子化合物中不存在分子等。

④混合物(O_2 和 O_3 、 NO_2 和 N_2O_4 、 C_2H_4 和 C_3H_6)的质量问题:可利用相同的最简式进行计算,如 46g NO_2 和 N_2O_4 混合气体的最简式为 NO_2 ,最简式的相对质量为 46, N 原子的物质的量等于 1mol, O 原子的物质的量等于 2mol, 46g NO_2 和 N_2O_4 混合气体含 N 原子数量为 NA,含 O 原子数量

为 2NAG

⑤要注意常见反应的电子转移问题,例如: 过氧化钠与水、 CO_2 的反应(1mol 过氧化钠参与反应转移 1mol 电子);二氧化氮与水(3mol NO_2 参与反应转移 2mol 电子),铁与氯气反应(1mol 铁与足量氯气反应转移 3mol 电子、1mol 氯气与足量铁反应转移 2mol 电子)。

⑥注意粒子个数可以是分子数,也可以是原子数、电子数、质子数、中子数。如 H_2O 中含分子数为 NA、氢原子数为 $2N_A$ 、原子总数为 $3N_A$,电子数和质子数均为 $10~N_A$ 。常见分子中均含 10~个电子的物质还有 HF、 NH_3 、 CH_4 。

【典例 3】 (2013 年广东理综)设 n_A 为阿佛加德罗常数的数值、下列说法正确的是

A. 常温常压下, 8gO₂含有 4n_A个电子

B. 1L0.1 mol·L-1 的氨水中有 n_A 个 NH₄+

C. 标准状况下, 22.4L 盐酸含有 na 个 HCl 分子

D. 1molNa 被完全氧化生成 Na₂O₂, 失去 2n_A 个电子

解析: $8gO_2$ 的物质的量为 0.25 mol, $1 \land O_2$ 中含有 16 个电子, 0.25 mol O_2 含电子个数应为 $4n_A \land$, A 选项正确。由于氨水是弱碱只能电离出部分一小部分 NH_4^+ , 0.1 mol NH_3 · H_2O 电离出的 NH_4^+ 一定小于 $0.1n_A \land$, B 选项错误。盐酸是强酸完全电离,不存在 HCl 分子,C 选项错误。1 molNa 被完全氧化生成 Na_2O_2 只失去 $n_A \land$ 电子,D 选项错误。

答案: A

考点四 电化学知识和应用

复习策略:有关电化学的试题主要考查原电池和电解池的基本原理及其应用(电镀、金属腐蚀及防护等)的知识。在复习中要注意理解原电池或电解池工作原理,准确判断电极的类型及其电极反应式(电源的负极失电子、正极得电子,电解池的阳极失电子、阴极得电子)。在分析这类问题时,要根据题目中的信息(实验现象、电极性质、电源正负极等),准确判断两极得失电子情况,不要被题目的新颖性所干扰。

重点知识与注意问题

①分析反应装置时,首先看题给装置中有无电源,没有电源的是原电池.有电源的是电解池。

②如果是原电池,活泼金属作负极,失电子发生氧化反应,较不活泼的金属或非金属导体(石墨)作正极。溶液中的阳离子得电子,发生还原反应,阳离子放电顺序为: $Ag^{+>}$ $Fe^{3+>}$ $Cu^{2+}>H^{+>}$ $Pb^{2+}>$ $Sn^{2+}>$ $Fe^{3+}>$ $Cu^{2+}>$ $H^{+>}$ $Pb^{2+}>$ $Sn^{2+}>$ $Fe^{3+}>$ $Cu^{2+}>$ $H^{+>}$ $Pb^{2+}>$ $Pb^$

③燃料电池中还原性较强的物质 (如甲烷、甲醇等) 失电子,发生氧化反应,氧化性气体 (O_2) 得电子,发生还原反应

④如果是电解池,阴极电极反应式按阴极上阳离子放电顺序书写,阴极上阳离子放电顺序为 Ag⁺>Fe³⁺>Cu²⁺>H⁺>Pb²⁺>Sn²⁺>Fe²⁺>Zn²⁺。而阳极电极反应还要看阳极的电极材料是惰性电极 (Pt、Au、石墨) 还是活性电极 (活泼性在 Ag 之前的金属)。若是惰性电极,则溶液中的阴离子在阳极放电,