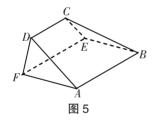
分析: 本题的原型是人教 A 版必 修2第58页练习第2题,如图4. 在正 方体 $ABCD-A_1B_1C_1D_1$ 旁边补上三个一样 的正方体得到一个大长方体、易知平面 MEFN 即是平面α. 由图知平面MEFN∩ 平面 ABCD=EF, 平面 MEFN∩平面 $ABB_1A_1=AN$, 并且 ΔAFN 是正三角形, 则AF与AN所成的角为60°、正弦值为 $\frac{\sqrt{3}}{2}$, 即 m, n 所成角的正弦值为 $\frac{\sqrt{3}}{2}$. 故选 A.

(2016年高考数学全国乙 卷, 理 18) 如图 5, 在以 A、B、C、 D、E、F 为顶点的五面体中,面 ABEF为正方形, AF=2FD, ∠AFD=90°, 且 二面角 D-AF-E 与二面角 C-BE-F 都是

- (I)证明:平面 ABEF L 平面 EFDC;
- (Ⅱ) 求二面角 *E-BC-A* 的余弦值.



分析: 若习惯于只会建立坐标系后 借助向量解决立体几何问题, 考生对这 道题会感到无从着手而浪费了很多时 间。从评卷结果看,不少考生误认为点 F(或E)处的三条棱两两垂直,以此 来建立空间直角坐标系而导致错误.

解法 1 (I) 由已知可得 $AF \perp FD$, $AF \perp FE$, 且 $FD \cap FE = F$, 则 $AF \perp$ 平面 CDFE, 而AF⊂平面ABEF, 所以平面 ABEF⊥平面 EFDC;

(Ⅱ) 如图 6, 过 D 作 DG ⊥EF, 垂足为G,

由(I)知DG_平面ABEF.

以G为原点、以 \overrightarrow{GF} 、 \overrightarrow{FA} , \overrightarrow{GD} 方 向分别为x, y, z轴的正方向建立空间 直角坐标系 G-xyz, 由(I) 知 $\angle DFE$ 是



二面角 D-AF-E 的平面角, 故 $\angle DFE=$ 60°、设 GF=1、则 DF=2、 $DG=\sqrt{3}$,于 是A(1,4,0),B(-3,4,0),E(-3,0,0), $D(0,0,\sqrt{3}),$

由已知, AB//EF, 所以 AB//平面 EFDC, 又平面 ABCD ∩ 平面 EFDC= CD, 故AB//CD, DC//FE,

由 BE //AF, 可得 BE ⊥ 平面 EFDC, 所以 $\angle CEF$ 为二面角 C-BE-F的平面 角,即 $\angle CEF=60^{\circ}$,则 $C(-2,0,\sqrt{3})$.

$$\overrightarrow{AC} = (1,0,\sqrt{3}), \overrightarrow{EB} = (0,4,0),$$
$$\overrightarrow{AC} = (-3,-4,\sqrt{3}), \overrightarrow{AB} = (-4,0,0).$$

设平面 BCE 的一个法向量 $\vec{n}=(x,y,$

$$z$$
),则 $\widehat{n}\cdot\overrightarrow{EC}=0$, 即 $\begin{cases}x+\sqrt{3} \ z=0,\\ n\cdot\overrightarrow{EB}=0.\end{cases}$

 $(3.0.-\sqrt{3})$, $\mathbb{H} \stackrel{\rightarrow}{|n|} = 2\sqrt{3}$:

$$z_1$$
), \mathbb{I} $\begin{bmatrix} \overrightarrow{m} \cdot \overrightarrow{AC} = 0, \\ \overrightarrow{m} \cdot \overrightarrow{AB} = 0. \end{bmatrix}$ $\begin{bmatrix} -3x_1 - 4y_1 + \sqrt{3} \ z_1 = 0, \\ -4x_1 = 0. \end{bmatrix}$

 $\Rightarrow y_1 = \sqrt{3}$, x = 0, 则 z = -4, 得 $m = (0, \sqrt{3})$, 4), $\mathbb{H}|\vec{m}| = \sqrt{19}$:

又 $\overrightarrow{m} \cdot \overrightarrow{n} = -4\sqrt{3}$.则 $\overrightarrow{m} = -4\sqrt{3}$ 的夹角 θ 为

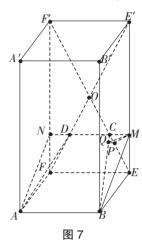
$$\cos\theta = \frac{\overrightarrow{m} \cdot \overrightarrow{n}}{|\overrightarrow{m}| \cdot |\overrightarrow{n}|} = \frac{-4\sqrt{3}}{2\sqrt{3} \cdot \sqrt{19}} = \frac{-2\sqrt{19}}{19},$$

:: 二面角 E-BC-A 的余弦值为

$$-\frac{2\sqrt{19}}{19}$$
.

如果能够借助长方体, 即将几何体 "嵌入"长方体中,对于第二问即有如 下解法:

解法2 由(I)知,将几何体"嵌 入"长方体 ABCD-AB'C'D'中, 如图 7. 记



对角线 EF', FE'相交于点 O, C, D 分别是 OE,OF的中点,平面 ABCD 分别交 E/E, F/F 于点 M,N, 易知 $\angle CEF = \angle DFE = 60^{\circ}$.

设 AB=4、则 CD=2、CM=DN=1. $ME=NF=\sqrt{3}$. CE=DF=2.

过点 M 作 $MP \perp CE$ 于点 P, 过点 P作 $PQ \perp BC$, 连结 MQ, 则 $MQ \perp BC$, 于是 $\angle MQP$ 是二面角 E-BC-M 的平面

在 $Rt\Delta MEC$ 中, 易求 $MP=\frac{\sqrt{3}}{2}$,

在 $Rt\Delta MEB$ 中、易求 $MB=\sqrt{19}$.

在 RtΔMBC 中, 易求 $MQ = \frac{\sqrt{19}}{2\sqrt{5}}$,

在 RtΔMPQ 中, 易求 PQ= $\frac{1}{\sqrt{5}}$,

∴ 在 $Rt\Delta MPQ$ 中, $\cos \angle MQP = \frac{PQ}{MQ}$

$$=\frac{\frac{1}{\sqrt{5}}}{\frac{\sqrt{19}}{2\sqrt{5}}} = \frac{2\sqrt{19}}{19},$$

 \therefore 二面角 E-BC-A 的余弦值为 $2\sqrt{19}$

同时, 如果能够借助长方体, 建立 坐标系就有了支撑,而且各点的坐标也 容易得到.