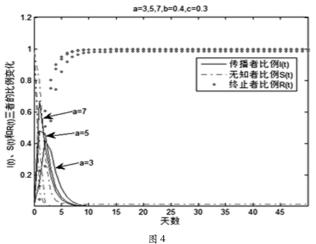

表1 "复旦投毒"事件相关数据

 天数	网民日关注度	i (t)	天数	网民日关注度	i (t)	天数	网民日关注度	i (t)
1	74211	0.371055	11	3347	0.016735	21	890	0.004450
2	74093	0.370465	12	3412	0.017060	22	602	0.003010
3	41077	0.205385	13	2117	0.010585	23	414	0.002070
4	37834	0.189170	14	1212	0.006060	24	470	0.002350
5	19492	0.097460	15	930	0.004650	25	471	0.002355
6	11978	0.059890	16	923	0.004615	26	523	0.002615
7	13280	0.066400	17	868	0.004340	27	399	0.001995
8	9699	0.048495	18	938	0.004690	28	445	0.002225
9	7370	0.036850	19	1044	0.005220	29	324	0.001620
10	4604	0.023020	20	902	0.004510	30	324	0.001620

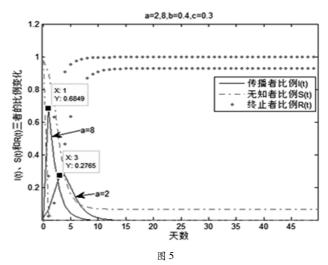
图 2

其次,我们通过对图 2 中的数据分析和采用 Matlab2012a 绘制图 2 中关于 I(t)数据趋势曲线图;最后,再使用 Matlab 2012a 对新建校园舆情微信传播模型进行仿真实验。


实验结果表明, 当参数设置为: a=2.5, b=0.4, c=0.3, I(0)=0.02, S(0)=0.98, R(0)=0 时, 新模型得出微信传播变化趋势, 与实际趋势吻合程度较好, 结果如图 3。

2. 模型参数分析

(1) 传染强度 a 变化分析


校园與情传播模型中的传染强度 a 的值分别从在 1 到 5 变化时,I(t)、S(t) 和 R(t) 三者的比例变化明显,如图 4 所示。

事实上,当 $a \ge 9$ 以后,I(t)、S(t) 和 R(t) 三者的比例变化情况基本一致。通过传染强度 a 取值变化得到系列结果,并对比分析我们有下表 1 和对比图 5:

表 1 最大传播率对比 (a=2,9)

a 取值	最大传播率	对应天数	传播周期
2	27.65%	第4天	21 天
8	68.49%	第2天	15 天

经过上面的图表观察和数据分析,我们发现:传染强度 a = 8 和 2 时,传播比例分别达到最大值 68.49% 和最小值 27.65%; a≥9以后,传播比例开始回落,第 15 天左右开始 趋于平稳,20 天左右基本消失。传染强度会影响事件传播的 扩散速度、传播周期和最大传播者规模。传染强度越大 (a≤8),扩散速度越快、传播周期越短、最大传播者比例越大,反之扩散速度越慢、传播周期越长、最大传播者比例越小。

(2) 自身免疫率 b 和后天免疫率 c 对事件传播的影响分析 考虑到 b、c 与大学生的自身的认知能力和学校管理部门