因此,这两个主成分可以较充分地反映各区域高等 教育核心竞争力水平。

表 2	相关矩阵的特征值及累计贡献率
1× 4	伯大龙件的特征追及条件贝协学

成份	初始特征值			提取平方和载入			旋转平方和载入		
PX, 177	合计	方差的 %	累积%	合计	方差的 %	累积%	合计	方差的 %	累积%
1	13.902	66. 198	66. 198	13.902	66. 198	66. 198	9.912	47. 202	47. 202
2	4.062	19.345	85.543	4.062	19.345	85.543	8.052	38. 341	85.543
3	0.986	4.696	90.239						
4	0.521	2.481	92.720						

(4) 计算主因子以及综合得分

根据因子载荷的大小(一般以≥0.6 为标准), 对两个公因子涵盖的指标进行筛选,并根据构成这 两个公因子的主要指标的类型和性质进行命名。因 子载荷矩阵如表 3 所示。从表 3 中可以看出,第一 公因子主要解释的是与高等教经费支出以及科研能 力有关的变量,将其命名为经费与科研因子;第二 公因子则主要解释的是与高等教育基础设施以及科 研能力有关的变量,将其命名为基础设施与科研因 子。

表 3 因子载荷矩阵

	成份				
	1	2			
\mathbf{X}_1	0.207	0.453			
X_2	0.095	0.275			
X_3	0.395	0.380			
X_4	0.430	0.117			
X_5	0.412	0.895			
X_6	0.424	0.142			
X_7	0.522	-0.291			
X_8	-0.394	0.390			
X_9	0.667	0.726			
X_{10}	0.143	0.967			
\mathbf{X}_{11}	0.348	0.927			
X_{12}	0.113	0.961			
X_{13}	0.834	0.520			
X_{14}	0.697	0.025			
X_{15}	0.941	0.292			
X_{16}	0.778	0.300			
X_{17}	0.792	0.679			
X_{18}	0.647	0.643			
X ₁₉	0.822	0.714			
X ₂₀	0.789	0.657			
X ₂₁	0.939	0.687			

两个公因子的得分公式为: $F_i = \sum_{(j=1)}^{(n=31)} \alpha_i \ X_{ij}$, 即: $F_1 = 0.207 \ X_1 + -0.095 X_2 + \cdots + 0.9039 X_{31}$; $F_2 = 0.453 \ X_1 + 0.275 \ X_2 + \cdots + 0.687 \ X_{31} \circ$

据此计算出两个公因子的得分后,可以根据公因子的得分计算出各个区域的综合得分。综合得分的计算公式为: $Z=a_1F_1+a_2F_2$,其中, a_1a_2 分别是公因子 F_1 和 F_2 的方差贡献率,分别等于47.202%、38.341%。其综合得分的计算结果按照降序排列如表 4 所示。

表 4 区域高等教育核心竞争力综合得分及其排名

区域	综合 得分	排名	区域	综合 得分	排名	区域	综合 得分	排名
北京	2.52	1	黑龙江	0.10	12	江西	-0.44	23
江苏	1.31	2	湖南	-0.06	13	青海	-0.46	24
上海	1.24	3	吉林	-0.09	14	宁夏	-0.52	25
广东	0.54	4	重庆	-0.19	15	贵州	-0.54	26
湖北	0.43	5	安徽	-0.20	16	山西	-0.59	27
浙江	0.39	6	河北	-0.22	17	内蒙古	-0.59	28
天津	0.27	7	福建	-0.24	18	西藏	-0.60	29
陕西	0.25	8	河南	-0.26	19	新疆	-0.68	30
辽宁	0.23	9	广西	-0.39	20	海南	-0.72	31
四川	0.21	10	甘肃	-0.42	21			
山东	0.16	11	云南	-0.43	22			

(二) 我国区域高等教育核心竞争力分类

本文拟利用31个省级区域的综合得分,采用层次聚类分析法,对各区域的个高等教育核心竞争力进行聚类。

为了更好地体现出各个省域之间的差异,根据 层次聚类同类离差平方和最小的原则,最终将 31 个 区域划分为 7 类。分类的结果如表 5 所示。

表 5 聚类分析结果

等级	区域
1	北京
2	江苏、上海
3	广东、湖北、浙江
4	天津、山西、辽宁、四川、山东、黑龙江
5	湖南、吉林、重庆、安徽、河北、福建、河南
6	广西、甘肃、云南、江西、青海
7	宁夏、贵州、山西、内蒙古、西藏、新疆、海南