智 育 广 角

重 文一华南师范大学数学科学学院 排的 数若 与干 限关 对系 排式 列

重排问题与限对排列问题是组 合数学中一类重要的排列计数问 题,这一系列看似毫无关联的的计 数问题,实际上彼此间蕴含着微妙 的关系,但目前关于这类问题的研 究成果不多.再者,要深入研究这 一系列的组合数通常需要借用其递 推关系甚至彼此间的一些关系式, 因此本文通过观察表格及定义式等 方面寻找这些重要的关系式, 为后 续更深入的研究提供一定的基础.

一、定义与引理

首先给出这两个问题中的若干 定义与引理:

引理 1.1 在 $1,2\cdots,n$ 的排列 中,没有一个元排保位的排列个数

为
$$D_n$$
, 且 $D_n = n! \cdot \sum_{i=0}^n \frac{(-1)^{-i}}{i!}, n \ge 0$.

定义 1.2 1,2,···,n 的排列中, 形 如 (i,i+1), $i=1,2,\dots,n-1$ 称为对子.

引理 1.1 1,2,…,n 在的排列 中,没有对子的排列个数为 Q_a ,

且
$$Q_n = (n-1)! \cdot \sum_{i=0}^{n-1} \frac{(-1)^i}{i!}, n \ge 1.$$

定义 $1.2 \ 1.2, \dots, n$ 的排列中, 形如 (i,i+1), $i=1,2,\dots,n$ 称为圆 对子,约定 (n,n+1) = (n,1).

引理 1.3 在 1.2.....n 的排列 中,没有圆对子的排列个数为 R_{o} ,

$$\exists R_n = n! : \sum_{i=0}^{n-1} \frac{(-1)^{-i}}{i!}, n \ge 1.$$

定义 1.3 1,2,···,n 的排列中, 首尾两个元素相接,形成逆时针方 向的一个排列称为圆排列.

引理 1.4 在 1.2....n 的排列 中,没有对子的圆排列个数为 o ,

且
$$\mathring{Q}_n = (n-1)! \cdot \sum_{i=0}^{n-1} \frac{(-1)^i}{i!}, n \ge 1.$$

引理 1.5 在 1.2.… n 的排列中,

没有圆对子的圆排列个数为 R_{\bullet} ,且 $\mathring{R}_{n} = (-1)^{n} + n! \cdot \sum_{i=1}^{n-1} \frac{(-1)^{i}}{i! \cdot (n-i)}, n \ge 1.$

之间的一些关系 笔者通过观察 D_n , O_n , R_n ,

 Q_n , R_n 的特殊值 (见下表), 发

现 D_n , Q_n , R_n , Q_n , R_n 之间存在 某些关系。

$$= (n+1)! \cdot \sum_{i=0}^{n+1} \frac{(-1)^{i}}{i!} - (-1)^{n+1} + n! \cdot \sum_{i=0}^{n} \frac{(-1)^{i}}{i!} - (-1)^{n} = D_{n+1} + D_{n}$$

(1) 式得证.

$$\begin{split} Q_{n+l} &= n! \cdot \sum_{i=0}^{n} \frac{(-1)^{i}}{i!} (n+l-i) = \\ (n+l)! \cdot \sum_{i=0}^{n} \frac{(-1)^{i}}{i!} + n! \cdot \sum_{i=0}^{n-l} \frac{(-1)^{i}}{i!} \\ &= (n+1)! \cdot \sum_{i=0}^{n} \frac{(-1)^{i}}{i!} + \end{split}$$

$$n! \cdot \sum_{i=0}^{n} \frac{(-1)^{i}}{i!} - (-1)^{n} =$$

$$(n+2) \cdot n! \cdot \sum_{i=0}^{n} \frac{(-1)^{i}}{i!} - (-1)^{n}$$
$$= (n+2)D_{n} + (-1)^{n+1}$$

(2) 式得证.

定理 2.2 D_n 与 R_n 的关系: R_n =

$$D_n$$
- $(-1)^n$ (4)

定理 2.3 D_n 与 Q_n 的关系: D_n =

$$\stackrel{\circ}{Q}_{n+1}$$
 (5)

· — · · ·											
n	0	1	2	3	4	5	6	7	8	9	•••
D_n	1	0	1	2	9	44	265	1854	14833	133496	•••
Q_n	0	1	1	3	11	53	309	2119	16687	148329	•••
$\stackrel{\circ}{Q}_n$	0	1	0	1	2	9	44	265	1854	14833	•••
R_n	0	1	0	3	8	45	264	1855	14832	133497	•••
\mathring{R}_{n}	1	0	0	1	1	8	36	229	1625	13208	

发现的结论如下:

定理 2.1 D_n 与 Q_n 的关系:

$$Q_{n+1} = D_{n+1} + D_n \tag{1}$$

$$Q_{n+1} = (n+2)D_n + (-1)_{n+1}$$
 (2)

$$D_{n+1} = nQ_n \tag{3}$$

证明:根据 D_{α} 与 Q_{α} 的表示式

$$Q_{n+1}=n! \cdot \sum_{i=0}^{n-1} \frac{(-1)^{i}}{i!} (n+1-i)=$$

$$(n+1)! \cdot \sum_{i=0}^{n} \frac{(-1)^{i}}{i!} + n! \cdot \sum_{i=0}^{n-1} \frac{(-1)^{i}}{i!}$$

定理 2.4 D_n 与 R_n 的关系: D_n =

$$\mathring{R}_{n} + \mathring{R}_{n+1}$$
 (6)

定理 2.5 Q_n 与 R_n 的关系: Q_{n+1}

$$=R_n + R_{n+1} \tag{7}$$

定理 2.6 Q_n 与 Q_n 的关系:

$$Q_{n} = \overset{\circ}{Q}_{n} + \overset{\circ}{Q}_{n+1} \tag{8}$$

定理 2.7 Q_n 与 R_n 的关系:

$$\overset{\circ}{R}_{n+1} + \overset{\circ}{R}_{n+2} = nQ_n \tag{9}$$