3. 教师维度。同学生维度一样,建立教师视图作为教师维度数据源,教师维度属性为:教师(教师号,学院、教师名);教师没有年级和专业属性(因此许多高校教师主要以院系为单位管理,经常跨专业授课)。
4. 教学班级维度。教学班级是对某学期、某教师为某班级(教学对象)开设的某一门课程的抽象描述。
其次,为提高监控工作的水平,要设法保障监控数据质量。
可能造成统计数据质量不高的原因会是多方面的,如法制意识不强;统计人员队伍素质不高;被统计或调查对象不配合。提高统计数据质量的措施首先要提高统计人员素质;要把握数据源头,夯实统计数据质量基础;也要对统计数据质量进行监控。对数据质量监控的方法可以分为以下几类:按监控时间可分为日常监控和时点监控;安数据质量监控范围可分为抽样监控和全数监控;安数据质量监控的手段可分为审核、复核、校验、实地检查。
大数据时代观下监控模式的发展前景
(一)用数据库(包括学校概况、师资队伍、校园校舍、办学经费、图书资料、仪器设备、专业与课程、教学管理、教学效果、学生基本情况等数据群组信息)可以达到教育质量全面监控的目的,形成全面的、动态的教学质量监控体系。各个学校的状态数据库所采集的数据项是原始的,是真实、客观、准确的,未来开发的监控系统会自动生成各项工作中所需要的衍生数据,为更深的层次分析教育现象产生的原因以及教育发展的偏差和趋势服务。
(二)监控系统将是智能化的实时的开放的系统,从目前监控过于依赖专家的单一模式,转变为将系统数据分析与专家协调监控模式。系统也将有利于实施民主监督与社会监督。
(三)有利于教育主管部门和学校用数据信息治校,而不是分数治校。教育行政部门用数据发现“细微”的问题,及时提醒,引导教育,而不是分数掐死教育。也可以有效避免将教学质量监控等同于考试,避免监控沦落为片面追求升学率的推手。
(作者单位:广东省教育研究院)
责任编辑 邹韵文

